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Plane Waves Propagating in Gases Composed
of Composite Particles
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The quantum discrete kinetic equations are solved to study the propagation of plane
waves in a system of composite particles with hard-sphere interactions and the filling
factor (ν) being 1/2. We compare the dispersion relations thus obtained by the relevant
Pauli-blocking parameter B which describes the different-statistics particles for the
quantum analog of the discrete Boltzmann system when B is positive (Bose gases), zero
(Boltzmann gases), and negative (Fermi Gases). We found, as the effective magnetic
field being zero (ν = 1/2 using the composite fermion formulation), the electric field
effect will induce anomalous dispersion relations.

KEY WORDS: Pauli-blocking effect; external field.

1. INTRODUCTION

The progress in semiconductor technology has opened a rich field of studies
focused on the fundamental electron–electron interactions and quantum effects
in artificial atoms and molecules (composite particles Ghirardi and Marinatto,
2004; Avancini and Krein, 1995; Harju et al., 2002; Braun and Vechernin, 2004;
Kuze and Sirois, 2003; Yabu et al., 2004; Schrieffer, 2004; Agop et al., 2003;
Ichinose and Matsui, 2003; Fradkin et al., 1998). The most striking feature of
two-dimensional semiconductor quantum dots (QD) and quantum dot molecules
(QDM) is that the correlation and magnetic field effects are greatly enhanced
compared with their normal counterparts. Meanwhile, the (composite-particle)
system parameters can easily be changed, unlike in real atoms and molecules
where the parameters are natural constants. The controllable parameters make
it possible to tailor the semiconductor structures and, for example, to switch
between different ground states (Harju et al., 2002). In addition to the interesting
and fundamental correlation and quantum effects, this system is very important as
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a candidate for the gate of a quantum computer (Burkard et al., 1999; Hu and Das
Sarma, 2000).

In the presence of a strong magnetic field B transverse to a two-dimensional
system of electrons, the tiny cyclotron orbits of an electron are quantized to
produce discrete kinetic energy levels, called Landau levels. The degeneracy of
each Landau level-that is to say, its maximum population per unit area is B/φ0,
where φ0 = h/e is the elementary quantum of magnetic flux. This degeneracy
implies that the number of occupied Landau levels, called the filling factor, is
ν = ρφ0/B, where ρ is the two-dimensional electron density. The crucial point is
that the many-particle ground state of electrons at ν < 1 was highly degenerate in
the absence of interaction, with all lowest Landau level configurations having the
same energy.

It is well established that the electron–electron interaction strongly affects
the compressibility of a two-dimensional electron system at zero magnetic field
and even leads to the negative sign of the compressibility. Surprisingly, Dorozhkin
et al. found that its contribution is almost identical for the metallic states of
electrons at zero magnetic field and of composite fermions at Landau level filling
1/2 (Dorozhkin et al., 2002).

The fractional quantum Hall effect (FQHE) is observed in high-mobility two-
dimensional electron systems in the low-temperature, high-magnetic-field regime
(Jobst et al., 2000). It is believed that the FQHE arises from strong electron–
electron interactions, causing the two-dimensional electrons to condense into a
fractional quantum Hall liquid. Jain introduced the concept of “composite fermion”
(CF) where each electron is bound to two magnetic flux quanta, and in this picture
the FQHE can then be understood as a manifestation of the integer quantum Hall
effect of composite fermions (Jain et al., 2000). At a Landau level filling factor
ν = 1/2, a two-dimensional electron system can be transformed into a composite
fermion system interacting with a Chern–Simons gauge field (Heinonen, 1998). To
date, a wide variety of experiments have demonstrated that at ν = 1/2 the effective
magnetic field acting on the composite fermions is zero (Heinonen, 1998). Away
from ν = 1/2, the effective magnetic field acts on the composite fermions is given
by Beff = Bext − B(ν=1/2) where Bext is the applied external magnetic field. At
ν = 1/2, each electron is bound to two magnetic flux quanta, and thus the density
of the composite fermion system is equal to that of the electron system.

A semiclassical theory based on the Boltzmann transport equation for a
two-dimensional electron gas modulated along one direction with weak electro-
static or magnetic modulations have been proposed (Zwerschke and Gerhardts,
2001; Ustinov and Kravtsov, 1995; Zwerschke and Gerhardts, 1998; Zimbovskaya,
2003). Ustinov and Kravtsov studied the giant magnetoresistance effect in mag-
netic superlattices for the current perpendicular to and in the layer planes within a
unified semiclassical approach that is based on the Boltzmann equation with exact
boundary conditions for the spin-dependent distribution functions of electrons.
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Interface processes responsible for the magnetoresistance were found to be dif-
ferent in these geometries, and that can result in an essential difference in general
behaviour between the in-plane magnetoresistance and the perpendicular-plane
one (Ustinov and Kravtsov, 1995).

Boltzmann’s equation provides an adequate starting point of transport calcu-
lations for two-dimensional electron systems in the presence of periodic electric
and magnetic modulation fields, both in the regime of the low-field positive mag-
netoresistance and of the Weiss oscillations at intermediate values of the applied
magnetic field. For example, Zwerschke and Gerhardts solved Boltzmann’s equa-
tion by the method of characteristics, which allows to exploit explicitly information
about the structure of the phase space. That structure becomes very complicated if
the amplitudes of the modulation fields become so large and the average magnetic
field becomes so small that, in addition to the drifting cyclotron orbits, chan-
neled orbits exist and drifting cyclotron orbits extend over many periods of the
modulation (Zwerschke and Gerhardts, 1998, 2001).

Zwerschke and Gerhardts (1998, 2001) considered the 2DEG in the x–y plane
as a degenerate Fermi gas, with Fermi energy EF = m∗ v2

F /2, of (non-interacting)
particles with effective mass m∗ and charge −e obeying classical dynamics, i.e.
Newton’s equation m∗v̇ = −e[Ee + (v × B)]. In equilibrium, the electric field is
given by Ee(r) = ∇V (r)/e, where V (r) is the modulating electrostatic potential.
In thermal equilibrium, all states with energy below EF are occupied, and for
the linear response to an external homogeneous electric field E0 only the elec-
trons with energy E(r, v) = (m∗ v2)/2 + V (r) = EF contribute to the current. The
distribution function f (r, v, t) obeys the Boltzmann equation

∂f

∂t
+ Df − C[f ; r, v] = v · E0,

where the drift term D describes the change due to the natural motion of the
electrons in the modulation field (in absence of E0), and C is the collision operator.
We might use polar coordinates in the velocity space, v = vu with v(r) = vF [1 −
V (r)/EF ]1/2 and u(�)=(cos �, sin �). Sometimes (Avancini and Krein, 1995),
the drift term reads D = v · ∇ + [ωc + ωel(r,�)]∂/∂�, with cyclotron frequency
ωc = eBeff/m∗ and ωel(r,�) = (∇V )t with t(�) = (sin �, cos �).

Recently Jobst investigated the magnetoresistance of a weakly density modu-
lated high mobility two-dimensional electron system around filling factor ν = 1/2
(Jobst et al., 2000). The experimental ρxx-traces around ν = 1/2 were well de-
scribed by novel model calculations, based on a semiclassical solution of the
Boltzmann equation, taking into account anisotropic scattering. We also noticed
that, the effects of a tunable periodic density modulation imposed upon a 2D
electron system have been probed using surface acoustic waves by Willett et al.
(1998), Willett and Pfeiffer (1996). A substantial effect was induced at filling fac-
tor 1/2 in which the Fermi surface properties of the CF are anisotropically replaced
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by features similar to those seen in quantum Hall states. The response measured
using different SAW wavelengths and similarities in the temperature dependence
between the modulation induced features at 1/2 and quantum Hall states were
described therein (Willett et al., 1998; Willett and Pfeiffer, 1996).

Motivated by the interesting issues about ν = 1/2, we like to study their
characteristics relevant to the sound propagation in CF gases here using our verified
quantum (discrete) kinetic approaches (Chu, 2002, 2003, 2004a; Platkowski and
Illner, 1988; Bellomo and Gustafsson, 1991; Chu, 1999a,b). In the discrete kinetic
model approach (Platkowski and Illner, 1988; Bellomo and Gustafsson, 1991),
the main idea is to consider that the particle velocities belong to a given finite
set of velocity vectors, e.g., u1, u2, . . . , up, p is a finite positive integer. Only the
velocity space is discretized, the space and time variables are continuous (Chu,
2004a; Platkowski and Illner, 1988; Bellomo and Gustafsson, 1991; Chu, 1999a,b)
(please see the detailed references therein). By using the discrete velocity model
approach, the velocity of propagation of plane waves can be classically determined
by looking for the properties of the solution of the conservation equation referred
to the equilibrium state.

As a continuous attempt of plane waves propagating in dilute gases (Chu,
1999a,b, 2002a, 2003), considering the quantum analog of the discrete kinetic
model and the Uehling–Uhlenbeck collision term which could describe the colli-
sion of a gas of dilute hard-sphere Fermi-, Boltzmann- or Bose-particles by tuning
a parameter θ (Chu, 2004a; Vedenyapin et al., 1995; Uehling and Uhlenbeck,
1933) (via a Pauli-blocking factor of the form 1 + θf with f being a normalized
distribution function giving the number of particles per cell, say, a unit cell, in
phase space), in this paper, we plan to study the dispersion relations of plane
ultrasonic waves propagating in composite-particle gases by the quantum discrete
kinetic model which has been verified before. This presentation will give more
clues to the studies of the quantum wave dynamics in a system composed of
composite particles under strong external fields (Yabu et al., 2004).

2. THEORETICAL FORMULATIONS

The gas is presumed to be composed of identical hard-sphere particles of
the same mass. The discrete number density (of particles) is denoted by Ni(x, t)
associated with the velocity ui at point x and time t . Following the CF model,
around ν = 1/2 or any even-denominator ν = 1/2p, 2p fictitious magnetic flux
quanta (φ0 = h/e) are attached to each electron in the direction opposite to the ex-
ternal magnetic field B. The so formed composite particles follow Fermi statistics
and are named composite fermions. The flux attachment transforms the strongly
interacting two-dimensional electron system (2DES) of density ρ in a high a
magnetic field into an equivalent weakly interacting CF system, which experi-
ences a smaller effective magnetic field, Beff = B − 2ρpφ0. In particular, at exact
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even-denominator fillings, ν = 1/2p,B = 2p ρ h/e = 2ρp φ0, andBeff vanishes.
Under these conditions, the CFs reside in a magnetic field-free region and, like
ordinary 2D electrons at B = 0, they form a Fermi sea. The particles of this Fermi
system have an effective mass which is of purely electron–electron interaction
origin and therefore proportional to e2/ε lB (e.g., ε is the dielectric constant of
GaAs and lB = (hc/eB)1/2 is the magnetic length).

If only nonlinear binary collisions and the effective magnetic field Beff being
zero (for ν = 1/2 in the CF sense) are considered, we have for the evolution of Ni ,

∂Ni

∂t
+ ui · ∇Ni − eE

m∗ · ∇u̇i
Ni = Ci

≡
p∑

j=1

∑
(k,l)

(
A

ij

klNkNl − Akl
ij NiNj

)
, i = 1, . . . , p, (1)

where E is the electric field, m∗ is the effective mass of the particle, (k, l) are
admissible sets of collisions (Chu, 2002, 2003, 2004a; Platkowski and Illner,
1988; Bellomo and Gustafsson, 1991; Chu, 1999a,b). We may also define the
right-hand side of above equation as

Ci(N ) = 1

2

∑
j,k,l

(
A

ij

klNkNl − Akl
ij NiNj

)
, (2)

with i ∈ 	 = {1, . . . , p}, and the summation is taken over all j, k, l ∈ 	, where
A

ij

kl are nonnegative constants satisfying (Chu, 2002, 2003, 2004a; Platkowski and
Illner, 1988; Bellomo and Gustafsson, 1991; Chu, 1999a,b) (i) A

ji

kl = A
ij

kl = A
ij

lk :
indistinguishability of the particles in collision, (ii) A

ij

kl(ui + uj − uk − ul) = 0 :
conservation of momentum in the collision, (iii) A

ij

kl = Akl
ij : microreversibility

condition. The conditions defined for discrete velocities above are valid for elastic
binary collisions such that momentum and energy are preserved. The collision
operator is now simply obtained by joining Akl

ij to the corresponding transition
probability densities akl

ij through Akl
ij = S|ui − uj |akl

ij , where,

akl
ij ≥ 0,

p∑
k,l=1

akl
ij = 1, ∀ i, j = 1, . . . , p;

with S being the effective collisional cross-section (Chu, 2002, 2003, 2004a;
Platkowski and Illner, 1988; Bellomo and Gustafsson, 1991; Chu, 1999a,b). If
all n (p = 2n) outputs are assumed to be equally probable, then akl

ij = 1/n for
all k and l, otherwise akl

ij = 0. Collisions which satisfy the conservation and
reversibility conditions which have been stated above are defined an admissible
collision (Chu, 2002, 2003, 2004a; Platkowski and Illner, 1988; Bellomo and
Gustafsson, 1991; Chu, 1999a,b).
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With the introduction of the Uehling-Uhlenbeck collision term (Chu, 2004a;
Vedenyapin et al., 1995; Uehling and Uhlenbeck, 1933) in Eq. (1) or Eq. (2),

Ci =
∑
j,k,l

A
ij

kl [NkNl(1 + θNi)(1 + θNj ) − NiNj (1 + θNk)(1 + θNl)], (3)

for θ < 0 we obtain a gas of Fermi-particles; for θ > 0 we obtain a gas of Bose-
particles, and for θ = 0 we obtain Eq. (1).

From Eq. (3), the model of quantum discrete kinetic equation for dilute
hard-sphere gases proposed before (Chu, 2004a; Vedenyapin et al., 1995; Uehling
and Uhlenbeck, 1933) is then a system of 2n(= p) semilinear partial differential
equations of the hyperbolic type:

∂

∂t
Ni + vi · ∂

∂x
Ni − eE

m∗ · ∇v̇i
Ni = cS

n

2n∑
j=1

NjNj+n(1 + θNj+1)(1 + θNj+n+1)

−2cSNiNi+n(1 + θNi+1)(1 + θNi+n+1), (4)

where Ni = Ni+2n are unknown functions, and vi = c(cos[(i − 1)π/n], sin[(i −
1)π/n]), i = 1, . . . , 2n; c is a reference velocity modulus (Chu, 2002, 2003, 2004a;
Platkowski and Illner, 1988; Bellomo and Gustafsson, 1991; Chu, 1999a,b). The
admissible collisions as n = 2 are (v1, v3) ←→ (v2, v4).

We notice that the right-hand side of the Eq. (4) is highly nonlinear and
complicated for a direct analysis. As passage of the sound wave causes a small
departure from an equilibrium resulting in energy loss owing to internal friction
and heat conduction (Kneser, 1961; Grad, 1966), we linearize above equations
around a uniform equilibrium state (N0) by setting Ni(t, x) = N0 (1 + Pi(t, x)),
where Pi is a small perturbation. The equilibrium here is presumed to be the same
as in Chu (2004a), Vedenyapin et al. (1995), Uehling and Uhlenbeck (1933) (in the
absence of applied fields, the electrons will be at equilibrium and the distribution
function will be the equilibrium distribution function N0(ε − µ0) = [1 + exp(ε −
µ0)/kB T )]−1, where µ0 is the chemical potential, kB is the Boltzmann constant,
the corresponding Fermi surface is defined by the equations ε(k) = µ0 in the
quasi-momentum space, k is the wave vector). After some similar manipulations
as mentioned in Chu (1999a,b, 2002a, 2003), with B = θN0 (Chu, 2002, 2004a;
Vedenyapin et al., 1995; Uehling and Uhlenbeck, 1933), which gives or defines
the (proportional) contribution from dilute Bose gases (if θ > 0, e.g., θ = 1), or
dilute Fermi gases (if θ < 0, e.g., θ = −1), we then have[

∂2

∂t2
+ c2 cos2 (m − 1)π

n

∂2

∂x2
+ 4cSN0(1 + B)

∂

∂t

]
Dm

−4cSN0(1 + B)

n

n∑
k=1

∂

∂t
Dk = RHS, (5)
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where Dm = (Pm + Pm+n)/2, m = 1, . . . , n, since D1 = Dm for 1 = m (mod 2n).
Here, RHS denotes the contribution from the electric field. This term could be
worked out by following the previous approaches (Ustinov and Kravtsov, 1995;
Butler et al., 2000; Noce and Cuoco, 2000) (cf. the second term in the left-hand
side of the Eq. (4) in Ustinov and Kravtsov, 1995).

We are ready to look for the solutions in the form of plane wave Dm = dm

exp i(kx − ωt), (m = 1, . . . , n), with ω = ω(k). This is related to the dispersion
relations of (forced) plane waves propagating in dilute (monatomic) hard-sphere
Bose (B > 0) or Fermi (B < 0) gases. So we have

(
1 + ih(1 + B) − 2λ2cos2 (m − 1)π

n

)
dm − ih(1 + B)

n

n∑
k=1

dk = RHS,

×m = 1, . . . , n, (6)

with

λ = kc√
2ω

, h = 4cSN0

ω
,

where λ is complex and h (∝ 1/Kn) is the rarefaction parameter of the Bose- or
Fermi-particle gas (Kn is the Knudsen number which is defined as the ratio of the
mean free path of Bose or Fermi gases to the wave length of the plane (sound)
wave).

We firstly consider the case of rather weak electric field. It means RHS ≈ 0
considering other domainted terms in the Eq. (6). Let dm = C/(1 + ih(1 + B) −
2λ2 cos2[(m − 1)π/n]), where C is an arbitrary, unknown constant, since we here
only have interest in the eigenvalues of above relation. The eigenvalue problems
for different 2 × n-velocity model reduces to

1 − ih(1 + B)

n

n∑
m=1

1

1 + ih(1 + B) − 2λ2 cos2 (m − 1)π/n
= RHS ∼ 0. (7)

We solve only n = 2 case, i.e., 4-velocity case since for n > 2 there might be spuri-
ous invariants (Chu, 2004a; Platkowski and Illner, 1988; Bellomo and Gustafsson,
1991). For 2 × 2-velocity model, we obtain

1 −
[
ih(1 + B)

2

] 2∑
m=1

{
1

[1 + ih(1 + B) − 2λ2 cos2 (m − 1)π/2]

}
= 0.

3. RESULTS AND DISCUSSIONS

With the filling factor ν = 1/2, we are now ready to obtain the dispersion
relations for plane (sound) waves propagating in composite-paritcle gases (with
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Beff = 0). By using the standard symbolic or numerical software, we can obtain
the complex roots (λ = λr + i λi) from the polynomial equation above. The roots
are the values for the nondimensionalized dispersion (positive real part; a relative
measure of the sound or phase speed) and the attenuation or absorption (positive
imaginary part), respectively.

Calculated results (for zero external field) follow the conventional dispersion
relations of ultrasound propagation in dilute hard-sphere gases (Chu, 1999a,b,
2002a, 2003; Stamper-Kurn and Miesner, 1998; Andrews and Stamper-Kurn,
1998; Lee et al., 1957; Lee and Yang, 1957). Our results show that as |B| (B: the
Pauli-blocking parameter) increases, the dispersion (λr ) will reach the continuum
or hydrodynamical limit (h → ∞) earlier. The phase speed of the plane (sound)
wave in Bose gases (even for small but fixed h) increases more rapid than that of
Fermi gases (w.r.t. to the standard conditions : h → ∞) as the relevant parameter
B increases. For all the rarefaction measure (h), plane waves propagate faster in
Bose-particle gases than Boltzmann-particle and Fermi-particle gases. Meanwhile,
the maximum absorption (or attenuation) for all the rarefaction parameters h keeps
the same for all B. There are only shifts of the maximum absorption state (defined
as hmax) w.r.t. the rarefaction parameter h when B increases. It seems for the same
mean free path or mean collision frequency of the dilute hard-sphere gases (i.e.,
the same h as h is small enough but h < hmax) there will be more absorption
in Bose particles than those of Boltzmann and Fermi particles when the plane
(sound) wave propagates (Chu, 2004a).

In contrast, for the same h (as h is large enough but h > hmax, there will
be less absorption in Bose particles than those of Boltzmann particles when the
plane wave propagates. When B (i.e., θ ) is less than zero or for the Fermi-particle
gases, the resulting situations just mentioned above reverse. For instance, as the
rarefaction parameter is around 10, which is near the hydrodynamical or continuum
limit, we can observe that the ultrasound absorption becomes the largest when the
plane (sound) wave propagates in hard-sphere Fermi gases. That in Bose gases
becomes the smallest. As for cases of dilute Fermi gases (B < 0), the rather small
dispersion value (relative measure of different phase speeds between the present
rarefied state : h and the hydrodynamical state : h → ∞) when B approaches to
−1 perhaps means there is the Fermi pressure which causes a Fermi gas to resist
compression (Chu, 2002, 2003, 2004b).

If there is no rarefaction effect (h = 0), we have only real roots for all the
models. Once h �= 0, the imaginary part appears and the spectra diagram for
each gas looks entirely different. In short, the dispersion (krc/(

√
2ω)) reaches

a continuum-value of 1 (or saturates) once h increases to infinity. We noticed
that the increasing trend for the expression of our dispersion (λr ; dimensionless)
when waves propagating in Bose gases is similar to that (of dimensional sound
speed) reported in Stamper-Kurn and Miesner (1998), Andrews and Stamper-Kurn
(1998), Lee et al. (1957) Lee and Yang (1957). The absorption or attenuation
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(kic/(
√

2ω)) for our model, instead, firstly increases up to h ∼ 1, depending upon
the B values, then starts to decrease as h increases furthermore (Chu, 2004b). The
results presented here also show the intrinsic thermodynamic properties of the
equilibrium states corresponding to the final equilibrium state after the collision
of dilute hard-sphere Bose (B > 0), Boltzmann (B = 0), and Fermi (B < 0) gases.

At low temperatures, the Pauli exclusion principle forces Fermi-gas particles
to be farther apart than the range of the collisional interaction, and they therefore
cannot collide and re-thermalize. That is to say, identical fermions are unable
to undergo the collisions necessary to re-thermalize the gas during evaporation
because of the need to maximize Pauli blocking efects (Chu, 2002, 2003). The
much more spreading characteristics of dispersion relations for dilute Fermi gases
(B < 0) thus obtained (Chu, 2004b) seems to confirm above theoretical reasoning.

Considering the case of nonzero electric fields, i.e., RHS �= 0, we can obtain
the detailed mathematical expression for RHS by following the verified approaches
(Ustinov and Kravtsov, 1995; Butler et al., 2000; Noce and Cuoco, 2000) with

RHS ≡ i
e|E|
m∗ δ(ε − µ0)c cos

(
m − 1

n
π

)[
c cos

(
m − 1

n
π

)
k + ω

]
, (8)

where δ is the delta function. To obtain similar dispersion relations together
with the Eqs. (6) or (7) with nonzero RHS, we must impose the other condition
from the Eq. (8) with RHS being zero for arbitrary C. Under this situation, we
have anomalous results : |λr | = 1/

√
2 (the relative phase speed λr is negative!

cf. (Caldwell, 2002) for similar negative sound speed results considering the
phantom energy states characterized by a super-negative equation of state) and
λi = 0 for all the rarefaction measure (hs) and the Pauli-blocking parameter (Bs).
This strange behavior for ν = 1/2 (Beff = 0, the electric field (E) effect is being
considered) within the composite fermion formulation, however, is similar to that
reported in (Chu, 2002, 2003) for the specific case of sound propagating in normal
fermionic gases (the Pauli-blocking parameter B = −1) or sound propagating in
dilute gases (for all Bs but with a free orientation parameter being π/4). There is
no attenuation for above-mentioned cases. This last observation might be relevant
to the found enhanced conductivity (for 2D electron gases) corresponding to
the even-denominator factor ν = 1/2 (composite fermions) using surface acoustic
waves (of wavelength smaller than 1 µm) (Willett et al., 1998; Willett and Pfeiffer,
1996) (geometric resonance of the composite fermions’ cyclotron orbit and the
ultrasound wavelength was also observed at smaller wavelength therein). On the
other hand, if we replace the electric field in Eqs. (1), (4) with the gravitational field,
then our results (with nonzero external field) of anomalous dispersion relations
will qualitatively resemble that reported in (Caldwell, 2002) for similar negative
sound speed or super-negative equation of state.

To conclude in brief, by using the quantum discrete kinetic approach, for the
case of nonzero electric field, we obtain strange dispersion relations for waves



1438 Kwang-Hua Chu

propagating in CF gases with ν = 1/2 : |λr | = 1/
√

2 (λr is negative) and λi = 0
for all the rarefaction measure (hs) and the Pauli-blocking parameter (Bs). We
shall investigate other interesting issues (Ghirardi and Marinatto, 2004; Avancini
and Krein, 1995; Harju et al., 2002; Braun and Vechernin, 2004; Kuze and Sirois,
2003; Yabu et al., 2004; Schrieffer, 2004; Agop et al., 2003; Ichinose and Matsui,
2003; Fradkin et al., 1998) in the future.
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